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Abstract

In pursuit of a better understanding of the properties and behaviors

of worm-like polymer chains, we present data generated from large-scale

simulations of a discretized worm-like chain in confinement employing

the pruned-enriched Rosenbluth method (PERM). In this publication,

we focus on confinement channels of rectangular cross-section. We find

that the simulations support two distinct Odijk regimes for these worm-

like chains: the classic Odijk regime made up of deflection segments

oriented approximately in the same direction, and a second regime

where the chain folds up on itself within the channel to create backfolds,

or hairpin turns. The rectangular channel results are presented in a

similar fashion to the previous studies of their square counterparts.

This backfolded regime is posited as an explanation for the transi-

tion between classic regimes, which is where many DNA confinement

experiments fit in, due to DNA’s stiff nature. The crossover between

the classic and backfolded Odijk regimes is also shown in agreement to

theory. The theory also predicts a power law between chain extension

and Odijk’s scaling parameter for rectangular channels, ξ3, which is

corroborated with data presented here. While the backfolded regime

covers only a narrow range of channel sizes, the definition of ξ3 allows

for finer differentiation between regimes.
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1 Introduction

Our motivation for this project stems from discrepancies between experimental results

and theory presented in Reisner et al.’s formative research1 for DNA molecules confined to

nanochannels. None of the previously-proposed regimes could explain the data. For worm-

like chains (detailed in section 2.3) with a persistence length, `p, and a width, w, confined

to a nanochannel with a square cross-section of width D, there are two well-studied regimes

in the limits of strong confinement and weak confinement. In strong confinement (D � `p),

the classic Odijk regime2 is apparent. The classic Odijk regime is characterized by deflection

segments that zig-zag across the channel and by the tendency of the chain to grow in one

direction along the channel. The classic de Gennes regime3 is characterized by spherical

“blobs” of entwined chain length that form within the channel due to weak confinement

(D > `2
p/w). The region between these two distinct regimes is where our interests lie.
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ABSTRACT: Using pruned-enriched Rosenbluth method (PERM) simulations of a
discrete wormlike chain model, we provide compelling evidence in support of Odijk’s
prediction of two distinct Odijk regimes for a long wormlike chain confined in a
nanochannel. In both cases, the chain of persistence length lp is renormalized into a series
of deflection segments of characteristic length D2/3lp

1/3, where D is the channel size. In
the first (classic) Odijk regime, these deflection segments are linearly ordered. In the
second Odijk regime, thin, long wormlike chains can backfold at a length scale quantified
by the global persistence length. We have measured this quantity by simulations and
modified Odijk’s global persistence length theory to account for thermal fluctuations. The global persistence length, which is
defined to be independent of the effect of excluded volume, provides the requisite closure to Odijk’s scaling theory for the second
regime and thus allows us to resolve much of the confusion surrounding the so-called “transition” regime for DNA confined in a
nanochannel. We show that Odijk’s theory for the backfolded regime correctly describes both the average chain extension and
the variance about this extension for wormlike chains in channel sizes between the classic Odijk regime and the de Gennes blob
regimes, with our data spanning several decades in terms of Odijk’s scaling parameter ξ. Although the backfolded Odijk regime
occupies a very narrow range of D/lp, it is indeed a regime when viewed in terms of ξ and grows in size with increasing monomer
anisotropy.

1. INTRODUCTION
The problem of a wormlike chain confined in a channel has
attracted significant attention since seminal experiments on
DNA in nanochannels revealed a discrepancy between theory
and experiment.1 Subsequent research, driven primarily by
simulation, has explained much of the discrepancy. For a
wormlike chain of persistence length lp and width w confined in
a square channel of size D, there are now simulation data that
support the existence of at least three regimes. The chain
statistics in very tight channels, where D ≪ lp, correspond to
the classic Odijk regime2 of linearly ordered deflection
segments. The prefactors for the chain statistics in the classic
Odijk regime are known3 and in quantitative agreement with
simulations.4 When the confinement is relatively weak, confined
chains are in the de Gennes regime and arrange themselves into
a one-dimensional array of compression blobs.5 While the
original de Gennes model of isometric compression blobs only
extends down to channels of size D ≈ lp

2/w, there is now
convincing evidence6−8 for a so-called “extended de Gennes”
regime9−11 consisting of anisometric blobs that describes the
chain statistics over the range lp ≲ D ≲ lp

2/w.
The key outstanding question for channel-confined wormlike

chains, which we address here, concerns the chain statistics for
channel sizes between D/lp ≪ 1 and D/lp ≈ 1. In the context of
DNA in a nanochannel,11,12 this range of channel sizes is often
referred to as the “transition regime” despite the fact that
simulations of DNA models in channel confinement4,7,11,13

indicate that the transition from the extended de Gennes
regime to the classic Odijk regime spans less than a decade in

D/lp. Indeed, since DNA is generally taken as the model
polymer for studying channel-confined chains at the single
molecule level, it is not even clear whether there exists a
universal regime spanning channel sizes from D/lp ≪ 1 to D/lp
≈ 1 or just some gradual transition from the classic Odijk
regime to the extended de Gennes regime. In this sense, the
moniker “transition regime” splits the difference; these channel
sizes either correspond to a transition or a regime, but probably
not both. While the range of channel sizes spanning the gap
between the classic Odijk regime and the extended de Gennes
regime may be narrow, these channel sizes are highly relevant
for practical purposes, in particular in genomics,12,14,15 since
they encompass fractional extensions from about 20% to 85%
for DNA.4

There exist three different explanations for the transition
regime: (i) an ideal blob (Gauss−de Gennes) model,4,16,17

which is inspired by simulation data4,11,13 for DNA indicating
that the mean extension in the transition regime scales like ⟨X⟩
∼ D−1, albeit over a narrow range of channel sizes; (ii) a
cooperative backfolding model,18 which was inferred from
parametrized simulation data for chains with the relatively small
ratios of lp/w that characterize DNA; and (iii) a theory by
Odijk10 where the deflection segments can form hairpins with a
characteristic length scale g, which Odijk calls the global
persistence length.19 Explanations i−iii are conveniently divided
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Figure 1: A comparison of regimes for various degrees of confinement compared to channel
sizes (larger channels on the right). The classic Odijk regime is shown here with 5 deflection
segments. The backfolded Odijk regime is distinguished from its classic counterpart by
the existence of hairpin turns called backfolds (one shown at bottom). The characteristic
“blobs” are observed in both the classical and extended de Gennes regimes. (Reproduced
from reference 4.)

Brochard-Wyart et al. present compelling evidence5 to support an “extended de Gennes”

regime, characterized by elongated blobs, but still resembling the classic de Gennes behav-

ior. This regime lessens the gap between strong and weak confinement, but there is still

much ground to be covered. More recently, Odijk presented a theory6 to hopefully connect

the regimes for all combinations of persistence length and channel size. In a parallel to the
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extended de Gennes regime, Odijk extends the deflection segment model to include back-

folding, or hairpin turns, in which the chain reverses its direction in the channel. To measure

this long range (≥ `p) bending property, a new parameter is introduced: the global persis-

tence length, g (detailed in section 3.1). This global persistence length should be able to

extend into the extended de Gennes regime as g approaches `p. A dimensionless parameter,

ξ, incorporates both persistence lengths, the size of the channel and the width of the chain

to characterize the backfolding scaling theory.7

These regimes have been well-defined for channels with square and circular cross-sections,

but rectangular cross-sections may be more useful in the creation of microfluidic devices

where, for example, one dimension may be held constant to keep a consistent thickness

across devices of varying cross-sectional area. With the backfolding scaling theory for square

channels, similar scaling theories were also proposed for rectangular channels.7 Simulations

from our research group have already shown support for the scaling theories in square chan-

nels;4 we now present simulation data in support of Odijk’s backfolding scaling theories for

rectangular nanochannels.

2 Methods and Models

2.1 Ideal Random Walks

There are several algorithms for creating random walk polymers, but the method detailed

in this section is a building block for the method of the full simulation (Pruned-Enriched

Rosenbluth Method, or PERM). For an ideal polymer chain, each monomer of the polymer

chain can be represented by a point in three-dimensional space that has no volume. In

addition, the interactions (i.e. van der Waals forces) between particles are ignored. These

points are connected so that the order of the monomers is retained. The distance between any

two neighboring points is fixed to be the statistical segment length of a given monomer,8 but

since each point has no volume, the distance between any two points that are not neighboring
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is not a definitive value. This means two non-neighboring points are allowed to overlap

exactly, which differs greatly from any intuitive knowledge of objects in three-dimensions.

(Two physical solid objects with cannot intersect each other, in the most common sense.)

To obtain a simulated configuration of a polymer chain such as these, the chain is built up

one monomer at a time via a random walk.

In an unconfined random walk, the origin of the coordinate system is typically defined

as the position of the first monomer. To determine where the second monomer should be

placed, a random direction is chosen and the next monomer is placed at a fixed distance

from the first monomer. The locus of positions where the next monomer can be placed is

a sphere of a fixed radius with the previous monomer at the center. To choose a random

direction, we must choose a random point from this sphere. However, it is not sufficient to

choose a random pair of polar and azimuthal angles, (θ, φ), from the spherical coordinate

system. This incorrect method gives too many points near the poles of the sphere, causing an

unwanted bias in the system, as seen in figure 2. Marsaglia9 discusses three existing methods

of choosing a point from the surface of a sphere and proposes a new method that requires

fewer uniform variates (on average) and is faster than any of the other presented methods.

Due to its performance and few random numbers, Marsaglia’s method is used throughout

this discussion to obtain a random direction.

Figure 2: A comparison of spherical point picking distributions. The left sphere shows points
chosen from a normal distribution of θ ∈ [0, 2π) and φ ∈ [0, π), whereas the right sphere
shows the proper spherical distribution. (Reproduced from reference 10.)

The algorithm is as follows: choose two independent uniform distributions, V1 and V2, on
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the interval (−1, 1). Reject these points if V 2
1 +V 2

2 ≥ 1. Otherwise, the unit vector, 〈x̃, ỹ, z̃〉,

to the new random point is given by


x̃ = 2V1

√
1− V 2

1 − V 2
2

ỹ = 2V2

√
1− V 2

1 − V 2
2

z̃ = 1− 2 (V 2
1 + V 2

2 ) .

(1)

This vector has a length of 1, but can either be used in a dimensionless space such that the

distance between monomers is fixed at 1 or scaled to the appropriate length. If the distance

between monomers is represented by d, the vector, 〈x, y, z〉, to the next monomer is given

by 
x = dx̃

y = dỹ

z = dz̃.

(2)

The next monomer is then placed at the end of this vector, and the process is repeated until

the desired length of chain is reached.

The placement of a monomer unit is dependent only on its immediate predecessor, not

on any other part of the polymer, since the zero-volume monomers have no interactions

with their surroundings. When the positions of the monomers along the entire length of the

chain have been determined, the random walk algorithm is complete. The resulting set of

points that make up this configuration can then be analyzed to obtain properties about this

specific chain, such as center of mass, radius of gyration, and extension in any direction.

While the exact relation between any two non-neighboring monomers is not known, these

configuration-dependent properties can somewhat characterize this polymer. With enough

random walks, statistics can be calculated for these properties to reveal scaling relations.

One useful relation8 obtained from this model relates the radius of gyration, Rg, and the

average squared end-to-end distance, 〈h2〉, to the number of segments, N , and the statistical
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segment length (or Kuhn length11), b, through

R2
g =
〈h2〉

6
=
Nb2

6
. (3)

Since a random walk can go in one direction and take the next step in the opposite direction,

the most probable value of the end-to-end distance of an unconfined configuration will be 0.

For enough one-dimensional random walks, the distribution of the end-to-end distance is

centered at zero and is Gaussian in shape.8 When moving to the three-dimensional statistics,

more trials are required to begin to see a Gaussian distribution in three dimensions. (This is

achieved using spherical coordinates and plotting against the radial direction, due to angular

symmetry of the random walk.)

h

ri

Figure 3: An ideal random walk of length N = 10 in two dimensions. ~ri is the vector
connecting monomers i and i + 1; ~h is the end-to-end vector. Since the monomers are
zero-volume, the two pairs of crossing segments is allowed.

Due to all of this method’s assumptions, it will not produce many real-world applicable

results. This is only a first method that is built upon to create sophisticated simulation tech-

niques. Without yet incorporating the interactions between molecules within the polymer

chain, the next logical step is to account for the volume that a monomer contains.
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2.2 Self-Avoiding Walks

In order to determine how a simulated polymer chain will avoid self-intersection, we can

use a slightly more advanced model that uses a lattice, where monomers can only be placed

at specific sites. Many studies have been performed on self-avoiding walks on various shapes

of lattices (i.e. cubic,12–14 triangular,15,16 tetrahedral,17 and face-centered cubic16), with

cubic being the most common and intuitive, due to its simple representation in the standard

Cartesian coordinate system. Self-avoiding walks outside of the field of polymer physics have

also been greatly studied by mathematicians (sometimes called a lattice path, in this case)

such as Domb,18 Abbott & Hanson,19 and Kesten.20

When a simulated polymer chain is restricted to a lattice, the monomers can still be

represented as zero-volume points (as in the ideal random walk) with a fixed distance between

neighboring monomers. In this case, the lattice spacing ensures the fixed distance between

monomers. Taking the cubic lattice as an example, there are at most six directions in which

the next monomer can be placed (positive and negative directions in each of the x, y, and

z dimensions). This occurs only during the placement of the second monomer. For the

third monomer (and its successors), there are fewer than six directions since some directions

will cause a self-intersection. The restriction to lattice points means that the only way for

two monomers to intersect (or overlap), is by being located at the exact same point on the

lattice. Typically, self-avoiding walk algorithms will reject a configuration as soon as two

monomers intersect, which is why many walks must be performed to get an adequate number

of full-length trials. This effect will be even greater when the chain gets longer, since it will

try to coil in on itself, but it is still restricted to be self-avoiding. If it coils into a place where

there are no possible choices for the next monomer (and the chain is not the desired length

yet), that configuration is ended and either kept as a shorter-than-desired chain or rejected

entirely.
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×

ri

h

Figure 4: A self-avoiding walk of length N = 13 on a square lattice in two dimensions. ~ri
is the vector connecting monomers i and i + 1; ~h is the end-to-end vector. The simulation
is ended when the trial 14th segment is placed in such a way that would self-intersect,
represented as a red ×. The end-to-end vector is calculated by using the last properly added
segment (the 13th in this case).

An alternative to rejecting configurations is to keep all walks, regardless of size. This

will mean that, for a given data set, there will be much better statistics for the shorter chain

lengths, since it is difficult for a self-avoiding random walk to produce a long chain. In order

to observe statistics for long chain limits, a “smarter” algorithm must be used, such as the

Pruned-Enriched Rosenbluth Method (discussed in section 2.5).

2.3 Worm-Like Chain Model

In the aforementioned methods, the placement of one monomer has mostly been affected

by the positioning of the previous monomer. In the worm-like chain (WLC) model,21 the

polymer is made up of a continuously flexible rod. The cross-sectional size of the chain is

determined by the size and shape of the monomer itself, but does not affect the model’s

behavior. (This model is an ideal, zero-volume chain.) The amount that the rod can bend

is called the persistence length, `p, which is characteristic of a polymer. The persistence

length is the distance along the polymer before the orientation changes appreciably due to

thermal fluctuations.8 (Bending due to external forces does not factor in to the persistence

length.) Defining this persistence length allows the WLC model to limit the amount of

bending in the continuous polymer rod. The Kratky-Porod model for worm-like chains22
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is useful for polymers under extensional forces, but can only be solved for small forces,23

which can be applicable to polymers in bulk (unconfined). This model is very useful for stiff

molecules, such as DNA,24 but can be difficult to simulate numerically, which can be solved

by discretizing the worm into finite segments as in section 2.4.

T(s)
r(s)

N(s)
w

(a) A continuous worm-like chain

T(s)
r(s)

N(s)
w

(b) A discretized worm-like chain

Figure 5: A comparison of the same polymer simulated using a continuous worm-like chain
(a) and a discretized worm-like chain (b). Since (a) is a continuous model, it can be rep-
resented by a smooth curve, ~r(s), parameterized by arclength, s. The tangent and normal

vectors,25 ~T and ~N , are labeled at one point, but have values for the entire length of the
chain. Both models have a contour length L, but (b) is discretized into N = L/w segments
represented by N + 1 beads.

2.4 Discretized Worm-Like Chain Model

The final model to be discussed is the discretized worm-like chain (DWLC) model,26

which is a combination of most of the previously mentioned models. Instead of a continuous

length of chain like in the WLC model, the chain is broken into spheres with a diameter equal

to the distance between repeat units in a polymer. The DWLC model is able to model, to

appreciable accuracy, a continuous WLC, given that the number of discrete segments is high

enough. On the other hand, it is also able to reproduce the results from freely-jointed chains

(where the angle to the next monomer is unrestricted). This means that, when given the

proper parameters, the DWLC model is versatile and accurate at describing a wide variety

of polymers.
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An interesting category of molecules to simulate is DNA because the single-stranded and

double-stranded types differ greatly in their properties. In many cases, the double-stranded

DNA is so stiff that it requires the continuous WLC model with high persistence lengths.

Single-stranded DNA is not as stiff, and is typically modeled with a discrete model. Tree

et al. argue26 for the use of DWLC to properly model both types of DNA, with the caveat

that base-pair and stacking interactions are neglected. The interests of this research group

lie in microfluidics and the physics of DNA molecules, so the DWLC model is well-suited for

our applications. Hence, this model is employed in our simulations, and will be described in

more detail below.

In this model, we have N + 1 “beads” (spheres) of diameter w connected by N bonds of

a fixed length, a. This gives an overall contour length of

L = Na. (4)

In order to build a configuration, the potential energies are calculated, and higher-energy

configurations are penalized while lower-energy configurations are more preferred. There are

several terms that make up the overall potential energy of a chain, but the main contributors

are bending energy and excluded volume, which are used in our simulations. To incorporate

the long-range bending effects (those which determine the persistence length of a given

polymer), the bending potential energy, Ubend, is calculated for each pair of bonds. It is

more favorable to have a configuration with a lower energy. This total potential energy is

given by

Ubend

kBT
= βUbend = κ

N−1∑
j=1

(1− cos θj), (5)

where β is defined as the reciprocal of the product of the temperature and the Boltzmann

constant (an often used scaling factor for molecular energies) and θj is the angle between

bonds labeled j and j + 1. The bending constant, κ, is related to the Kuhn length, b,
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through27

b

a
=
κ− 1 + κ cothκ

κ+ 1− κ cothκ
. (6)

In one limiting case, κ → 0, there is no bending energy, so the Kuhn length is equivalent

to the width of each bead and the system acts as a freely-jointed chain. In cases where the

system acts like a WLC, the persistence length is related to the Kuhn length via

lp ≡
b

2
. (7)

The other source of potential energy in this model comes from the excluded volume of each

discretized sphere in the polymer chain. The excluded volume is defined as infinite in the

case where two beads are intersecting each other, and zero elsewhere. If a configuration’s

energy ever goes to infinity, it is no longer a valid configuration and will be rejected. The

definition of this energy for every pair of beads i and j is given as

UEV

kBT
= βUEV =


∞ |rij| ≤ w

0 |rij| > w

, (8)

where |rij| is the distance between the bead centers. In most of our cases, w = a, which

means the chain will appear as a sequence of touching beads. This gives another method of

calculating the contour length of these chains,

L = Na = Nw. (9)

2.5 Pruned-Enriched Rosenbluth Method

There are many advantages of the Pruned-Enriched Rosenbluth Method (PERM) over

the previously mentioned polymer simulation methods. Random walks of ideal chains will

typically produce Gaussian distributions of the end-to-end distance, whereas PERM is able

12



to sample over the entire space, including rare events.28 While the self-avoiding walks will

either give short chains or rejects collisions outright, PERM always returns simulations of the

desired length. The simulation code used to produce these data was developed internally by

Douglas Tree and Abhiram Muralidhar within the Dorfman Group using the DWLC model

and the PERM for building polymer chains.

The Rosenbluth method of sampling29 is based on the self-avoiding walk algorithm, but

adds a bit of intelligence to it. With a self-avoiding walk, the algorithm will reject a config-

uration as soon as it tries to put the next monomer in an already occupied location, which

tends to generate very short chains. In simulating DNA, for example, it is necessary to sim-

ulate long chains to replicate the long-range bending properties seen in experimental trials.

(λ-DNA, a standard DNA molecule used experimentally, is 48502 base pairs in length.30) To

overcome this length restriction, Rosenbluth sampling makes an educated guess as to where

the next monomer will be placed. The information that the algorithm uses is referred to as

the atmosphere, which is the number of ways that a certain configuration can add another

monomer.28 On a lattice, the atmosphere, a, is well defined: for a one-dimensional ideal

random walk, a = 2 since it can always go in the positive direction or in the negative; for a

two-dimensional ideal random walk, a = 4 for the positive and negative directions of each

dimension. Self-avoiding walks pose a more complicated problem, since the first point has an

atmosphere of a1 = 4 to place the second point, but a2 (to place the third point) immediately

decreases to 3 since it cannot return to the location of the first monomer. (The first point is

placed with “infinite” atmosphere, hence a0 is ignored.) As the self-avoiding walk continues

on this two-dimensional square lattice,

ai ∈ {3, 2, 1, 0} for i > 1, (10)

depending on the configuration of already-placed monomers. In the unfortunate case where

ai = 0, the configuration is trapped and cannot add the next monomer, and is therefore not
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able to reach the desired length, commonly known as attrition.31 This is similar to the self-

avoiding walk algorithm since many trial configurations will be terminated early, drastically

reducing the number of full-length configurations returned.

The atmosphere of a certain configuration defines the number of possible directions that

a chain can continue growing, but only one direction will be chosen with a probability of

pi =
1

ai
(11)

at each point i < N , if there is no other energy acting upon the chain. Since each point

i will have a different atmosphere, this probability will induce a bias because some chains

will have no choices where to go (ai = 1 for some time), whereas others will grow through

relatively open space. To correct for this, Rosenbluth sampling28 corrects this by giving each

generated chain a weight,

Wn =
n−1∏
i=0

ai, (12)

which occurs with an overall probability of

Pn =
n−1∏
i=0

pi =
n−1∏
i=0

1

ai
, (13)

giving PnWn = 1, thereby removing any bias obtained from the introduction of the atmo-

sphere. This weight is then used in calculating statistical properties, such as the average

extension and average radius of gyration.

As previously mentioned, Rosenbluth sampling alone cannot remove the attrition of long

chain samples completely (but it does greatly improve over self-avoiding walks). Grass-

berger32 developed pruning and enriching strategies to aid Rosenbluth sampling in order to

produce long chains with approximately no attrition. There are several techniques proposed

by Grassberger32 and later by Janse van Rensburg,33 which are quite complex. Essentially,

the algorithm will grow a tree of chains (a tour) that will be enriched by gaining branches if
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the atmosphere is relatively large or be pruned by removing a branch with a relatively low

atmosphere.

In our case, calculating the atmosphere is quite difficult because the simulation is not

restricted to a lattice and has a weighted distribution of trial points based on potential energy.

Since our algorithm26 is not restricted to a lattice, there are an infinite number of possible

directions for the next monomer to be placed, which would generate infinite atmosphere

for every step. Thus, a parameter must be passed to our algorithm that determines how

many trial points to test; we commonly use an atmosphere of K = 5 trial points. When the

algorithm is choosing which atmospheric points to try, it uses the bending potential energy

(equation 5) to determine the probability distribution of directions. To calculate the weight

of each trial point, we factor in the excluded volume potential energy (equation 8) at each

nth step via26

a(k)
n = exp(−βU (k)

EV,n). (14)

One of these trial steps will be randomly chosen using the probability

p(k)
n =

a
(k)
i

wn

, (15)

where wn is the overall weight of the nth growth step given by

wn =
K∑
k=1

a(k)
n . (16)

The weight of the entire polymer configuration is multiplicative to give an nth-step weight of

Wn =
n∏

i=0

wi. (17)

The pruning/enriching parameter is the weight of the chain compared to its ensemble

average weight, 〈Wn〉. When the specific weight of a chain is lower than the ensemble

average, the chain is running out of open spaces in which to grow, meaning it is not a
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favorable branch and is pruned. In the other case where the weight is much higher than

the average, the algorithm will create branches from this point in the chain.26 A downside

to these enrichments is that many tours may share parts of their configurations because a

long chain could enrich at the last bead, producing two chains that differ only in the last

bead. Due to this, the algorithm is set up to generate many tours, but only write a small

percentage (1–5 %) to the data files. This is to remove the bias of very similar chains. When

the algorithm has made its N th step, it is finished and the chain is the desired length. WN

can then be used in calculating the weighted statistical properties for chains of length N or

as a function of chain length.

Other improvements made to our specific algorithm by Douglas Tree and Abhiram Mu-

ralidhar include making educated predictions and parallelizing the computation scheme. It is

difficult to estimate the ensemble weight average for a set of parameters before running any

simulations. To generate a rough value, the code first runs a “blind” simulation to estimate

〈Wn〉, which it then can extrapolate to long chains:26 at large n,

log 〈Wn〉 ∝ n. (18)

The code starts with a blind simulation of a small chain of 51 beads (50 segments) to give

an estimate of 〈Wn〉, and then repeats with a “non-blind” simulation, using the estimated

〈Wn〉 as the pruning/enriching parameter. Then, it approximately doubles the number of

segments and repeats the process. When the desired chain length is almost reached, the

simulation performs a “full” run-through, generating the final configuration that is saved

as the simulation’s output. During this full simulation, properties such as the span and

end-to-end distance are calculated on the fly, depending on what flags the user has set.

The full simulation runs in Fortran 90 on a Dell Linux cluster at the Minnesota Su-

percomputing Institute, using a master/slave scheme to fully utilize its parallel computing

abilities.
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3 Theories

3.1 Global Persistence Length

While the standard persistence length of a polymer, `p, describes the local bending prop-

erties, there are larger-scale attributes that cannot be accurately predicted with only the

persistence length. A so-called global persistence length was proposed6 for worm-like chains

near the classic Odijk regime2 to better explain these long-range conformational shapes. In

strong confinement, the channel size is not large enough to allow for the chain to change

direction, or backfold. However, as we transition into slightly larger channels, we observe

backfolding.

From a visual standpoint, the global persistence length defines the distance along a

channel between two hairpin turns, which are approximately where the polymer changes

direction along the channel’s main axis. In vector geometry terminology, a hairpin turn is

where the polymer chain’s turning angle25 to the channel’s main axis reaches ±90◦. With a

large enough sample size (either in number of simulations and/or length of chains), finding

the mean distance between hairpin turns might be feasible, but is not useful for smaller

samples.

D

X

1
3

6
5

4

2

12 34 56

Figure 6: A continuous WLC model in two dimensions exhibiting hairpin backfolding under
near-strong confinement. The channel size is D and the extension along the channel is
labeled with X, equivalent in this case to the end-to-end distance along the channel axis, Rx.
The global persistence length, g, is the average distance between two consecutive hairpins
(labeled 1 - 6) when projected onto the axis along the channel, shown beneath the visual
representation of the polymer.
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For individual samples, a more helpful method of determining the global persistence

length is to fit a function relating the projection of the mean square end-to-end distance, R2
x

onto the main channel axis to the contour length4 via

R2
x =

1

3
(1 + 2m)

[
2gL− 2g2 (1− exp (−L/g))

]
, (19)

where m is an orientational order parameter34 of the average of the second Legendre poly-

nomial of cos θ,

m ≡ 〈P2 (cos θ)〉 =

〈
3 cos2 θ − 1

2

〉
. (20)

At the limit of large L, the long chain limit, the exponential term drops out, giving a simple

polynomial in g. In fact, if we plot R2
x/L`p versus L/`p, equation 19 transforms into a

dimensionless form,

R2
x

L`p
=

1 + 2m

3

[
2

(
g

`p

)
− 2

(
g

`p

)2(
`p
L

)(
1− exp

(
−L
`p
· `p
g

))]
, (21)

which, at L/`p →∞, further reduces to

R2
x

L`p
=

2 (1 + 2m)

3

(
g

`p

)
. (22)

This implies that if we have long chains with enough samples to calculate m adequately, the

global persistence length can be found directly from the limit of equation 22. Hence, the

value of the horizontal asymptote of the plot of R2
x/L`p versus L/`p is sufficient to obtain a

value of the global persistence length.
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Figure 7: An example plot of 8 worm-like chain simulations of the same persistence length
in differently-sized channels fitted with a dotted line to find g. Each simulation reaches a
horizontal asymptote before L/`p = 200, which was the cutoff point for fitting these curves in
the asymptotic region. This simulations shown here have one dimension held at D/`p = 1,
while the other dimension varied such that D/`p = {0.5, 0.75, 1, 2, 3, 5, 10}, from top to
bottom, respectively.

The trend of global persistence length as a function of channel size has been studied in

both theoretical and computational capacities. The simulation result4 did not line up with

the theory6 in its original form, but was off by a prefactor. Since a real polymer may not be

perfectly oriented along a nanochannel, the global persistence length may be smaller than

expected for polymers that are not well-oriented. This prefactor was able to be explained by

an extra force inherent in the fluctuations within the hairpin curve shape,4,34 since Odijk6

did not account for these fluctuations.

The general equation6 for the global persistence length as a function of channel size (for

square channels) is

g

`p
= α

(
`p
r̄

)
exp

(
F̄

kBT

)
, (23)

which Odijk found α = 3.3082 through numerical integration. The average length of a

hairpin chord, r̄, is given by

r̄

`p
=

1

6

(√
E2

m + 6
√

2Em

(
D

`p

)
− Em

)
, (24)
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with Em = 1.5071 found through another numerical integration of Odijk’s model. The force

on the polymer hairpin, F̄ , is then

F̄

kBT
= Em

(
`p
r̄

)
− 3 ln

(
D − r̄

√
2

D

)
− ln

(
8

3π

)
(25)

and fit simulation data for square channels with great accuracy.4 This theoretical relation

has not yet been extended to channels of rectangular cross-section. Furthermore, this relation

is only valid in the limit of strong confinement, so it cannot be used with great confidence

for D > `p. This strict cutoff point is defined by the model through Odijk’s numerical

integrations and data fitting, unlike other regime cutoff points that are rough estimations.

At large channel sizes, the global and local persistence lengths collapse,4 due to extremely

weak confinement, validating the name of global persistence length.

3.2 Odijk Scaling Theory

Under the right conditions, a confined polymer can form hairpins or exhibit backfolding.

A new regime was posited by Odijk6 as distinct from the traditional regimes of de Gennes3

and Odijk,2 as well as the “extended de Gennes” regime.5 To obtain general predictions

for a polymer’s extension during backfolding within a nanochannel, Odijk7 introduced a

dimensionless scaling parameter, ξ, that allowed him to collapse many different situations

into a general scaling relation. In the conditions specified by Odijk,7 the general relation

between average extension along the channel direction of a polymer chain, 〈X〉, to its scaling

parameter is given by

〈X〉 ' Lξ1/3, (26)

where L is the contour length, which corresponds to the more commonly reported fractional

extension scaling relation of

〈X〉
L
' ξ1/3. (27)
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This is only valid in the regime where ξ < 1. As ξ → 1, the magnitudes of 〈X〉 and L

become very similar. Since equation 27 is not a strict equality, the ratio of the two cannot

be definitively stated; ξ = 1 does not necessarily imply that 〈X〉 = L. In the regime where

ξ > 1, there will be a crossover point where 〈X〉 > L in this model. The contour length

is defined as the distance along the backbone of the polymer, regardless of bends or folds,

whereas the extension is the overall distance from one side of a polymer coil to the other, along

the direction of the nanochannel. With these physical definitions, if 〈X〉 = L, this implies

that the polymer is completely straight and aligned to the channel’s axis. To attempt to

increase the extension without affecting the contour length, this completely straight polymer

must then be further stretched, which will only lead to breaking of the chain, leading to the

breakdown of Odijk’s backfolding scaling relation.

To differentiate the distinct cases presented by Odijk,6 he defines ξ1, ξ2, ξ3, and ξ4 as

different scaling parameters for different regimes. The first two are for square nanochannels,

while the latter two are for rectangular nanochannels. (Odijk calls them “nanoslits”.) They

are presented in terms of raw variables as well as their dimensionless equivalents. The first

case is for square nanochannels with strong confinement (D � `p � L), where the scaling

parameter is defined7 by

ξ1 =
gw

D5/3`
1/3
p

=

(
g

`p

)(
D

`p

)− 5
3
(
`p
w

)−1

, (28)

which has been previously verified4 by simulations similar to those presented in this publi-

cation. The second case is valid for large channels (D & `p) within the “blob” regime, with

the scaling parameter defined7 as

ξ2 =
`pw

D2
=

(
D

`p

)−2(
`p
w

)−1

. (29)

Since this regime requires large channels, which requires long chains (many beads), it does

not lend itself well to simulations due to the computational time and space required to
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perform these simulations being much too large. If the channel size is increased even further

to D � `p, the polymer is essentially in its bulk state (unconfined), which is not of interest

to these studies.

Now we come to the regime on which this publication is focused. In the case of rectangular

nanochannels (or nanoslits), there are now two cross-sectional spatial dimensions; call them

D1 and D2 such that D2 ≥ D1. The third scaling parameter is given7 by

ξ3 =
gw

D
2/3
2 D1`

1/3
p

=

(
g

`p

)(
D1

`p

)−1(
D2

`p

)− 2
3
(
`p
w

)−1

. (30)

In the degenerate case where D2 = D1, equation 30 becomes equation 28. In section 4.2, we

present simulation results that support Odijk’s third scaling relation.

The final scaling parameter is useful in a regime of rectangular nanochannels where

D2 & `p, in the “blob” regime. Much like ξ2, ξ4 requires nanochannels that are large in

at least one dimension. While simulations for this regime would be more manageable than

those required to calculate ξ2, they are still somewhat unwieldy to simulate. The relation

for Odijk’s final scaling parameter7 is

ξ4 =
`pw

D2D1

=

(
D1

`p

)−1(
D2

`p

)−1(
`p
w

)−1

. (31)

If D2 is increased even further, the polymer is essentially confined in only one dimension,

giving two-dimensional excluded volume effects.35 Like with small-channel regimes, the

degenerate case of D2 = D1 transforms equation 31 into equation 29, verifying the simpler

square channel relations.
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4 Simulation Results

4.1 Ideal Chains

In the definition of the global persistence length,6 it is not subject to the effects of

excluded volume. Because of this, we can simplify the simulations required to generate

statistics for the global persistence length. The simulation time for ideal chains is drastically

lower than that required for real chains (with all other parameters held constant), which can

increase the efficiency of research techniques and help determine trends in the data without

attempting to perform “real-world” simulations with all interaction effects incorporated.

The global persistence lengths calculated can then be used in the equation 30, if the other

parameters are the same.

While the general Odijk regime (both classical and backfolded) is valid for D . `p, some

of the smaller channel sizes cannot be reasonably reached with our simulations, since the

global persistence increases exponentially with decreasing channel size.4 This means that

the simulations will require exponentially longer chains in order to observe an adequate

number of hairpin turns. To avoid these extremely long chains, we will limit the channel

size to D1, D2 ≥ 0.5`p, which will still allow a wide range of channel sizes to be simulated.

Depending on the aspect ratio of the cross-sectional dimensions of the channel, we may be

able to use D1 < `p as long as D2 � `p, to give the chain enough cross-sectional area to

be able to backfold. Nevertheless, for simplicity, the simulations are restricted to the more

well-defined minimum dimension of 0.5`p.

The space that the simulations with cover is defined by the persistence length, the aspect

ratio and the channel dimensions. An arbitrary upper limit of D1, D2 ≤ 20`p was used,

which allows for the observation of asymptotic behavior of g/`p → 1 at larger channel sizes.

The results for these simulations are shown in figure 8.
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Figure 8: A plot of global persistence length versus the shorter channel dimension for
4 different aspect ratios. Within each data set are 3 persistence lengths of `p/w ∈
{10 (red), 15 (green), 20 (blue)}, which do not show any trends between each other. The
asymptotic limit of g/`p → 1 in weak confinement demonstrates the collapse of the global
and local persistence length. (The values do dip below g/`p = 1, but can be explained due
to statistical fluctuations in the global persistence length.)

The general shape of these trends mimics the form described by theory6 as well as by

demonstrated by simulations.4 The prefactor, however, is not consistent between the various

aspect ratios represented in figure 8. There is no theory yet to describe the difference in trends

of global persistence length versus channel size for different aspect ratios of rectangular cross-

section. It is well expected4 that the global persistence length degenerates into the standard

persistence length at large channels (weak confinement), but the interesting fact is that the

different aspect ratios seem to reach the asymptotic limit at the same approximate channel

size. This may be due to the lack of a wide range of aspect ratios; a different trend may be

observed for larger aspect ratios.
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4.2 Real Chains

While the global persistence length of a chain’s configuration can be calculated using ideal

(no excluded volume) chains, the extension must be determined by running simulations that

incorporate the excluded volume effects into the configurations. To compare the data between

ideal and real chains and to use equation 30, the nanochannel’s effective dimensions must

remain the same. Since the ideal chains have no excluded volume, the center of any bead

can be placed right next to the wall of the nanochannel. Meaning the effective dimensions

are

D1,eff ×D2,eff = D1 ×D2. (32)

However, when the beads are given a solid volume with a diameter w, the closest the centers

of the beads can be to the wall of the nanochannel is at a distance of w/2 inside the wall.

This forbidden area is located along every wall of the channel, reducing each dimension

equally by a total of 2 ∗ w/2 = w. Due to this, the effective dimensions the become

D1,eff ×D2,eff = (D1 − w)× (D2 − w) . (33)

With these effective channels dimensions and the global persistence lengths generated

in the simulations presented in section 4.1, we can then rerun the simulations, this time

reincorporating the excluded volume effects. Some of the simulations performed had channel

sizes much larger than `p, which lie outside of the classic Odijk regime. The classic Odijk

regime is valid for D . `p, which we can loosely define as D ≤ 2`p, as supported by

experiment.36 As a simple extension to rectangular cross-sections, we will use this cutoff size

in both dimensions of the rectangular channels. This may drastically reduce the possible

channel sizes, but should still allow us to cover relevant values of ξ3.
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Figure 9: A plot of fractional extension versus the scaling parameter, ξ3, for 3 different
values of persistence length, scaled by the width of the chain, for real worm-like chain. As
predicted,7 the backfolded Odijk regime breaks down around ξ3 ' 1. In addition, these data
correspond to the same fractional extension as square channels for most values of ξ3. The
aspect ratios of the rectangular channels shown here are D2/D1 ∈ {1 (#), 2 (4), 3 (�), 4 (D)}
for each value of persistence length.

The results of these simulations are plotted in figure 9. The accuracy of Odijk’s definition7

of ξ3 is apparent through the collapse of 3 distinct values of dimensionless persistence length

onto the same curve. In addition, the backfolding regime is typically valid for D1, D2 � `p,

but give a sound estimate even at D1, D2 ≈ `p. It appears that the data deviate from the

scaling law at ξ3 ≈ 0.5, but not appreciably. The noticeable deviations from the scaling law

are near ξ3 ≈ 1, as predicted.7 For the simulation parameters specified in this publication,

the scaling law stated in equation 27 is supported.
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5 Summary & Future Work

Based on the simulation results presented here, the proposition of a backfolded Odijk

regime6 for worm-like chains confined to rectangular nanochannels is supported through the

agreement of global persistence length versus channel size trends for several aspect ratios

and persistence lengths. In addition, these trends (for a constant aspect ratio) collapse when

made dimensionless by dividing by the persistence length, much like the behavior of square

channels.4 A scaling theory may allow for the various aspect ratios to collapse onto a single

curve, but the correct relation has yet to be proposed.

To support the backfolded Odijk regime, scaling parameters, ξ1–4, were proposed7 to

characterize the fractional extension of polymers within this regime. The simulation data

in this work we able to confirm this scaling relation for rectangular channels, corresponding

to ξ3 in equation 30. In addition, the crossover point of ξ3 ≈ 1 is shown to be a reasonable

estimate for the transition between the classic Odijk regime and its backfolded counterpart.

While the initial plot of the fractional extension versus ξ3 (figure 9) agrees with the

scaling relation, there are more calculations required to show that the data generated by our

simulations are valid. One of the most important metrics to determine if adequate statistics

were reached during the simulation is the variance of the extension, δX2. In the backfolded

Odijk regime, the variance has not been shown to collapse like the more classic regimes. In

fact, for different persistence lengths, the chains show a wide range of variance for a small

range of channel size.4 However, with the introduction of Odijk’s ξ parameters, the variance

data seem to collapse. If we can replicate these properties for rectangular channels, then

Odijk’s backfolded regime will be even further verified.

Using similar simulation parameters, extending our data into the more traditional regimes

to span the channel size variable could explain the transitions between the four main regimes

of polymer confinement, or even reveal a possible micro-regime to further our understanding

of polymer dynamics. The difficulty with spanning any dimension is that simulation tech-

niques are typically specific to certain types of situations. For instance, to span all channel
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sizes, the simulations presented in this work would require extremely long chains to observe

some properties such as global persistence length (on the order of billion- or trillion-bead

chains in extreme confinement, D � `p).

Another method of verifying the backfolded Odijk regime would be through experimental

methods. With our simulations, the polymer is built from nothing on the inside of the

channel. In experiments, polymers such as DNA are forced into channels, possibly causing

biases in their configurations. An interesting, albeit extremely fantastic, way to emulate

our simulations in physical space would be to form a polymer in situ on the inside of a

confinement channel. However, most polymerization schemes will not allow for this, but this

might be a direct verification of our simulation methods.

The future work proposed for this research topic within the Dorfman group involve look-

ing into the variance and more simulation parameters to ensure that the backfolding scaling

relation is applicable for the entire variable space specified. Varying w, the width of the

beads, will allow for a new set of intrachain interactions, including crossing of bonds without

violating the excluded volume potential energy for w < 1. Since this is taken into account

in ξ3, these data should collapse as well onto the Odijk scaling law.7
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